

LIT UV WATER AND AIR DISINFECTION

500 million euro turnover
1,400 employees

LIT UV FACILITIES

Scientific & Production Centre, **Erfurt, Germany**

Subsidiaries & Representative Offices

Erfurt, Germany

Eindhoven, the Netherlands

Budapest, Hungary

Sofia, Bulgaria

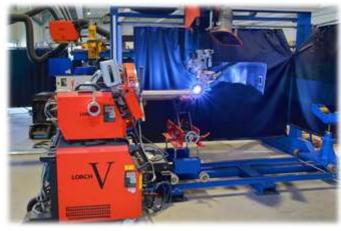
Moscow, Russia

Beijing, China

🔊 Lodz', Poland

LIT UV established in 1991

We have around 170 active customers in 42 countries



LIT UV FACILITIES

RESEARCH AND DEVELOPMENT

MECHANICAL PRODUCTION

UV LIGHT SOURCES PRODUCTION

ELECTRICAL PRODUCTION

- Certified to ISO 9001:2011
- ► 3 professors, 9 PhDs in various fields of UV related expertise
- ► Over 50 patents

UV TREATMENT PRODUCTS

Pressurized UV Systems

Air And Surface UV Disinfection Systems

Open Channel UV Systems

UV Lamp Technology

UV APPLICATIONS

WATER UV DISINFECTION: MUNICIPAL APPLICATIONS

DRINKING WATER SUPPLY

WASTEWATER

WATER REUSE

UV APPLICATIONS

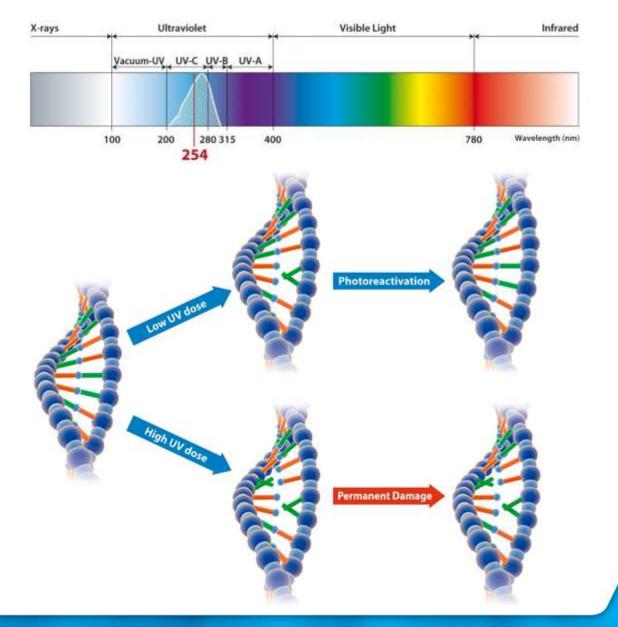
WATER UV DISINFECTION: COMMERCIAL AND INDUSTRIAL APPLICATIONS

FOOD INDUSTRY

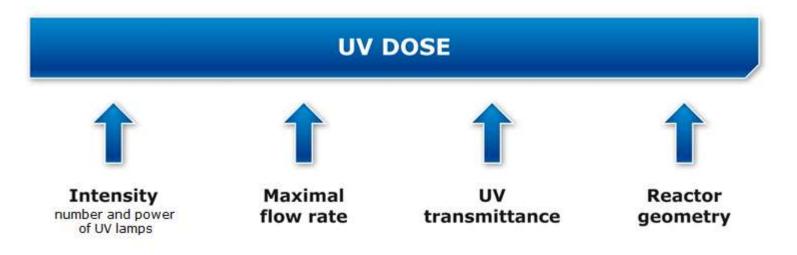
PHARMACEUTICAL INDUSTRY

FISH FARMS

SWIMMING POOLS


MICROELECTRONICS

OIL&GAS INDUSTRY



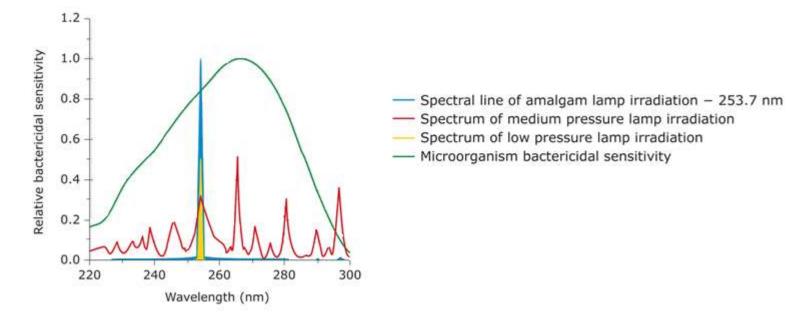
PRINCIPLE OF GERMICIDAL UV IRRADIATION

LITA

UV equipment to be designed to deliver minimal requested dose when all unfavorable factors coincide:

- maximal flow rate,
- minimal UV transmittance,
- sleeve fouling,
- end of UV lamp life.

BIO-ASSAY VALIDATION OF UV EQUIPMENT


DELIVERED UV DOSE IS VALIDATED IN A BIO-ASSAY TEST

A wide range of LIT equipment is certified in accordance with : ÖVGW, DVGW, SVGW and US-EPA, the globally accepted Bio-Assay Validation Protocols for UV disinfection equipment

UV LAMP CHARACTERISTICS

PARAMETER	Medium pressure lamp	Mercury low pressure lamp	Amalgam low pressure lamp	Amalgam HO low pressure lamp
LAMP POWER	2,000 – 20,000 W	15 – 100 W	100 – 800 W	100 – 1,000 W
UV EFFICIENCY	≈ 10 – 12%	≈ 40%	≈ 40%	≈ 40%
LIFITIME, hours	Up to 8,000	Up to 16,000	Up to 16,000	Up to 16,000
BY-PRODUCT FORMATION	POSSIBLE	None	None	None

HO SERIES - NEW GENERATION OF LOW PRESSURE AMALGAM LAMPS

1. High efficiency

- ✓ UV lamp power up to 800 W for the conventional amalgam lamps
- \checkmark UV lamp power up to 1000 W for HO series
- ✓ Efficiency up to 40%

2. Only 254 nm irradiance

✓ No by-product formation

3. Low operation temperature of UV lamp

- ✓ Minimum sleeve fouling
- ✓ Rated life time is up to 16,000 h

4. Compactness

- ✓ HO lamp length is reduced by 25%
- More compact dimensions of UV equipment

5. Multi-component amalgams

6. Innovative coating

UV EQUIPMENT DESIGN CONCEPTS

CLOSED VESSEL UV SYSTEMS

DUV Group

DUV PRO Group

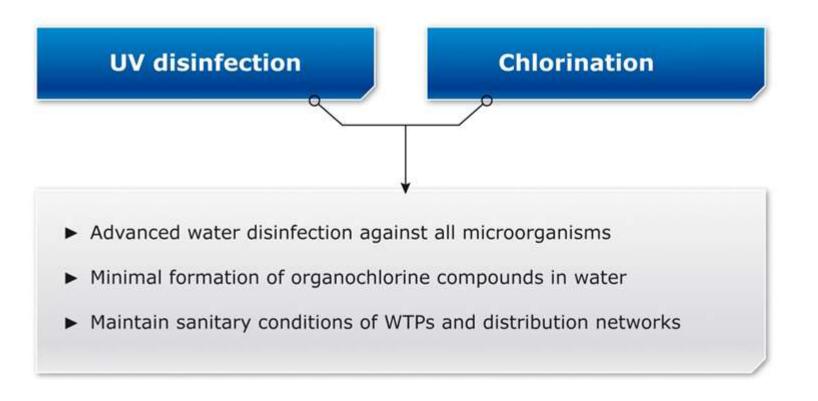
OPEN CHANNEL SYSTEMS

MLP Group

MLV Group

INITIAL DATA FOR UV EQUIPMENT SELECTION

- Flow rate
- Water quality data:
 - ✓ UV transmittance (UVT)
 - ✓ Turbidity
 - ✓ Color
 - ✓ Total iron (Fe)
 - ✓ Suspended solids (SS)
 - ✓ Chemical oxidation demand (COD)
- Disinfection criteria
 - ✓ Target microorganism
 - Outlet concentration of target microorganism (required level)
 - ✓ Requested UV dose


DRINKING WATER: VITAL TRENDS

- > UV disinfection is effective against chemical resistant viruses and protozoa
- Multi-barrier principle: combination of UV irradiation and chlorination enhances disinfection reliability
- UV disinfection usage reduces concentration of chlorine and chlorine compounds in the drinking water
- UV disinfection is applied in Budapest, Helsinki, Stockholm, Rotterdam, Amsterdam, Boston, San Francisco and others

UV DISINFECTION & CHLORINATION

DRINKING WATER: DISINFECTION METHOD COMPARISON

Disinfection method	Advantages	Disadvantages
Chlorine gas Cl ₂	 Effective against bacteria Medium long term effect Low operation cost 	 Ineffective against protozoa By-product formation (THM) Water quality dependence Environment and explosion hazard
Hypochlorite NaClO	 Effective against bacteria Medium long term effect Low operation cost 	 Ineffective against protozoa By-product formation (THM) Water quality dependence
Chloramines NH ₂ Cl, NHCl ₂ , NCl ₃	 High long term effect No by-product formation Effective against biofilms Relative low operation cost 	 Ineffective against bacteria and protozoa Water quality dependence
Ozone	 Effective against bacteria and protozoa Increase water quality 	 High capital and operation costs No long term effect By-product formation Additional AC filters
Ultraviolet	 Effective against bacteria and protozoa No by-product formation Medium operation cost Environment friendly 	• No long term effect
	'	

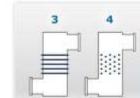
DRINKING WATER: UV EQUIPMENT

DUV-E Group

DUV-E - UV equipment for water with high UV transmittance (75% $\le \tau \le 95\%$)

z

L


DUV Pro-E - UV equipment for water with high UV transmittance ($70\% \le \tau \le 98\%$)

DUV-A – UV equipment for water with ultra high UV transmittance ($\tau \ge 85\%$)

DUV PRO-E Group

DRINKING WATER: UV DISINFECTION PLANTS GROUND WATER

Erd, Hungary - 48,000 m³/day

Podolsk, Russia - 63,200 m³/day

Calarasi, Romania - 36,000 m³/day

Les Maurettes, France - 26,000 m³/day

EU'S LARGEST UV DISINFECTION SYSTEM IN BUDAPEST, HUNGARY (INFRABED WATER OF THE DANUBE RIVER)

UV disinfection was introduced in 2008– 2010 based on favorable results of long term pilot tests

Total capacity of the UV plant consisting of 5 UV unit amounts to 600,000 m³/day

The main objectives are to increase disinfection efficiency first of all against chlorine resistant microorganisms and to reduce concentration of chlorine and chlorine compounds

WORLD'S LARGEST UV DISINFECTION SYSTEM IN ST. PETERSBURG (WATER SOURCE: THE NEVA RIVER)

North WTP 1,584,000 m³/day

North WTP	1,584,000 m³/day
Moskovskaya Pump Station	1,044,000 m³/day
Main WTP	864,000 m³/day
Murinskaya Pump Station	432,000 m³/day
Volkovskaya WTP	390,000 m³/day
Kolpinskaya WTP	250,000 m³/day
Frunzenskaya Pump Station	168,000 m³/day
South WTP	273,600 m³/day
Kronschtadt WTP	43,200 m³/day

Moskovskaya Pump Station 1,044,000 m³/day

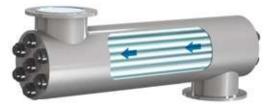
In 2004 Hepatitis A rate reduced from 124 to 3.3 per 100,000 persons (according to Ministry of Health Report)

LITA

Advantages:

- Environmentally friendly
- Cost-efficient
- Safe

Present-day sanitary and environmental requirements turned ultraviolet into the most economic technology for disinfection of treated effluents.


WASTEWATER DISINFECTION TECHNOLOGIES

Disinfection method	Advantages	Disadvantages
Chlorine	 Effective disinfection Low operation costs 	 Long term effect Cancerogenic by-product formation Environment hazard Needs contact time Complicated water treatment
Chlorine + dechlorination	 Effective disinfection Medium operation costs 	 Cancerogenic by-product formation Needs double contact time High capital costs
Ozone	 Effective disinfection No long term effect 	 High by-product formation Environment hazard High capital and operation costs
Ultraviolet	 Effective disinfection No by-product formation Environment friendly Medium operation costs 	

CLOSED VESSEL UV SYSTEMS

DUV-K Group

DUV PRO-K Group

DUV-K- UV equipment for water with UV transmittance $30\% \le \tau \le 65\%$

DUV Pro-K - UV equipment for water with UV transmittance $30\% \le \tau \le 65\%$

MLP-G – UV equipment for water with UV transmittance $\tau \ge 50\%$

MLP-F – UV equipment for water with UV transmittance $\tau \le 50\%$

MLV-G- UV equipment for water with UV transmittance $\tau \ge 50\%$

MLV-F Series – UV equipment for water with UV transmittance $\tau \le 50\%$

OPEN CHANNEL SYSTEMS

MLP Group

MLV Group

WASTE WATER: CLOSED UV SYSTEMS

WWTP, Orange, France - 36,000 m³/day

WWTP, Sesimbra, Portugal – 6,400 m³/day

WWTP, De-Friz , Vladivostok, Russia - 18,000 m³/day

WWTP, Port Fairy, Australia – 6,100 m³/day

WASTE WATER: OPEN CHANNEL UV SYSTEMS

WWTP, Gumi, South Korea - 330,000 m³/day

South-West WWTP, St. Petersburg Russia - 330,000 m³/day

WWTP, Suzhou, China - 260,000 m³/day

WWTP, Jeonju, South Korea - 120,000 m³/day

WWTP, Pecs, Hungary - 86,400 m³/day

WWTP, Beijing China - 60,000 m³/day

WASTE WATER: OPEN CHANNEL UV SYSTEMS

WWTP, Gadong, Brunei -58,200 m³/day

WWTP, Tatabanya, Hungary - 24,000 m³/day

WWTP, Lovech, Bulgaria -20,400 m³/day

WWTP, Cannet, France -18 700 m³/day

South WWTP, Budapest, Hungary - 80,000 m³/day

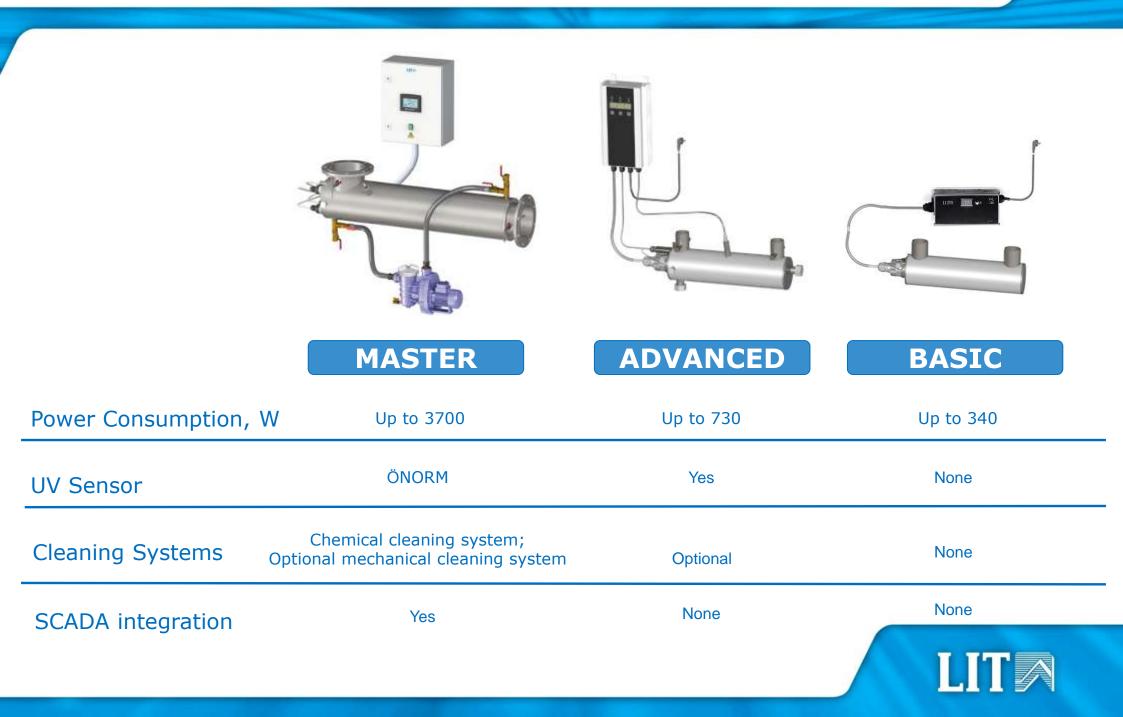
WWTP, Chateaulin, France - 8,400 m³/day

WASTE WATER: BEIJING

LARGE SCALED UV SYSTEM AT HUAI FANG – 600 000 m³ /day

Parameter	Unit	Value
Average daily flow rate	m³/day	600 000
Maximum hourly flow rate	m³/hr	32 500
Total power consumption	kW	380
Number of channels	pcs	6
Total number of lamps	pcs	432

WORLD'S LARGEST UV SYSTEM AT THE KURYANOVO WWTP 3,125,000 m3/day



Parameter	Unit	Value
Average daily flow rate	m³/day	3,125,000
Maximum hourly flow rate	m³/hr	180,000
Total power consumption	kW	3,800
Number of channels	pcs	17
Total number of lamps	pcs	6,120

PROCESS WATER: DUV-N GROUP

DUV-N PHARMA GROUP

- All-equipped units available in MASTER Plus and ADVANCED configurations
- UV reactor made of stainless steel 316Ti
- High grade material polish of the UV reactors inner surface (Ra 0,4– 0,8 micron)
- Sanitary fittings or tri-clamp water connections
- Clamp-connection seal materials: silicone, NBR, EPDM, Viton or PTFE.
- > 254 nm selective UV sensor certified according to ÖNORM
- MASTER Plus units equipped with easy-to-use touch screen which indicates system failure, lamp elapsed time, UV intensity and transmittance, data from flow meter and calculated UV dose.
- Control cabinet made of stainless steel, IP65
- Remote control that can be easily integrated into SCADA

Food factory, Netherlands, 6 000 m³/day

Pharmaceutical factory, Bulgaria, 1 400 m³/day

Municipal WWTP, Portugal, 480 m³/day

Public swimming pool, Hungary, 2 400 m³/day

Fish Farm, Norway, 1 030 m³/day

Swimming pool, Czech Republic 500 m³/day

Irrigation, Spain 20,000 m³/day

Drinking water, Poland 16,800m³/day

Drinking water, Russia 3,500 m³/day

Drinking water, Cambodia 9,500 m³/day

THANK YOU!

email: info@lit-uv.com www.lit-uv.com

